{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import folium\n", "import matplotlib\n", "import numpy as np\n", "import branca\n", "from matplotlib.pyplot import imread\n", "from matplotlib.colors import Normalize\n", "from matplotlib.colors import ListedColormap\n", "from folium import raster_layers" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "image = '/notebooks/resources/gpm/gpm_1d.20190424.tif'\n", "shapefile = '/notebooks/resources/centro-oeste.geojson'\n", "date = str(image[38:40]) + '-' + str(image[36:38]) + '-' + str(image[32:36])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10.0 -180.0\n", "-60.0 -180.0\n", "-60.0 -30.0\n", "10.0 -30.0\n" ] } ], "source": [ "from osgeo import gdal,ogr,osr\n", "\n", "def GetExtent(gt,cols,rows):\n", " ''' Return list of corner coordinates from a geotransform\n", "\n", " @type gt: C{tuple/list}\n", " @param gt: geotransform\n", " @type cols: C{int}\n", " @param cols: number of columns in the dataset\n", " @type rows: C{int}\n", " @param rows: number of rows in the dataset\n", " @rtype: C{[float,...,float]}\n", " @return: coordinates of each corner\n", " '''\n", " ext=[]\n", " xarr=[0,cols]\n", " yarr=[0,rows]\n", "\n", " for px in xarr:\n", " for py in yarr:\n", " x=gt[0]+(px*gt[1])+(py*gt[2])\n", " y=gt[3]+(px*gt[4])+(py*gt[5])\n", " ext.append([y,x])\n", " print (y,x)\n", " yarr.reverse()\n", " return ext\n", "\n", "def ReprojectCoords(coords,src_srs,tgt_srs):\n", " ''' Reproject a list of x,y coordinates.\n", "\n", " @type geom: C{tuple/list}\n", " @param geom: List of [[x,y],...[x,y]] coordinates\n", " @type src_srs: C{osr.SpatialReference}\n", " @param src_srs: OSR SpatialReference object\n", " @type tgt_srs: C{osr.SpatialReference}\n", " @param tgt_srs: OSR SpatialReference object\n", " @rtype: C{tuple/list}\n", " @return: List of transformed [[x,y],...[x,y]] coordinates\n", " '''\n", " trans_coords=[]\n", " transform = osr.CoordinateTransformation( src_srs, tgt_srs)\n", " for x,y in coords:\n", " x,y,z = transform.TransformPoint(x,y)\n", " trans_coords.append([x,y])\n", " return trans_coords\n", "\n", "raster=image\n", "ds=gdal.Open(raster)\n", "\n", "gt=ds.GetGeoTransform()\n", "cols = ds.RasterXSize\n", "rows = ds.RasterYSize\n", "\n", "ext=GetExtent(gt,cols,rows)\n", "\n", "src_srs=osr.SpatialReference()\n", "src_srs.ImportFromWkt(ds.GetProjection())\n", "# tgt_srs=osr.SpatialReference()\n", "# tgt_srs.ImportFromEPSG(3857)\n", "tgt_srs = src_srs.CloneGeogCS()\n", "\n", "geo_ext=ReprojectCoords(ext,src_srs,tgt_srs)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "010000" ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# create custom colormap\n", "\n", "colormap = branca.colormap.StepColormap(\n", " ['#2b83ba', '#64abb0', '#9dd3a7', '#c7e9ad', '#edf8b9', '#ffedaa', '#fec980', '#f99e59', '#e85b3a', '#d7191c'],\n", " vmin=0, vmax=10000,\n", " index=[0, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000],\n", " caption='rainfall (mm)'\n", ")\n", "\n", "colormap" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# recreate custom colormap setting transparency on the first color\n", "\n", "change = list()\n", "alphacolor = list()\n", "for item in colormap.colors:\n", " change.append(list(item))\n", "\n", "change[0][3] = 0\n", "\n", "for item in change:\n", " alphacolor.append(tuple(item))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# set colormap\n", "colormap = branca.colormap.StepColormap(\n", " alphacolor\n", " , vmin=0, vmax=10000\n", " , index=[0, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000]\n", " , caption='rainfall(mm)'\n", ")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# set scale\n", "colormap_scale = colormap.to_linear().scale(0, 1000).to_step(10)\n", "colormap_scale.caption = 'rainfall(mm) ' + date" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# draw map\n", "m = folium.Map(\n", " location = [-16, -63]\n", " , zoom_start = 5\n", " , control_scale = True \n", " , tiles = 'Stamen Terrain'\n", ")\n", "\n", "data = matplotlib.pyplot.imread(image)\n", "\n", "# Image bounds on the map in the form\n", "# [[lat_min, lon_min], [lat_max, lon_max]]\n", "m.add_child(raster_layers.ImageOverlay(\n", " data\n", " , opacity = 1\n", " , bounds = [ext[2], ext[0]]\n", " , mercator_project = True\n", " , colormap = colormap.rgba_floats_tuple\n", ")\n", " )\n", "\n", "m.add_child(colormap_scale)\n", "\n", "from rasterstats import zonal_stats\n", "\n", "calcs = zonal_stats(\n", " shapefile, \n", " image, \n", " stats=\"count min mean max median\",\n", " nodata=-999\n", ")\n", "\n", "average = str(\"%.2f\" % calcs[0]['mean'])\n", "\n", "text = 'Average Rainfall: ' + average + ' mm (' + date +')'\n", "\n", "folium.Marker(\n", " [-15, -53]\n", " , popup = text\n", " , tooltip = text\n", ").add_to(m)\n", "\n", "from folium import GeoJson\n", "\n", "folium.GeoJson(shapefile, name='geojson').add_to(m)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }