{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# pip install colorcet" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import folium\n", "import matplotlib\n", "import numpy as np\n", "import colorcet\n", "from matplotlib.pyplot import imread\n", "from matplotlib.colors import Normalize\n", "from matplotlib.colors import ListedColormap\n", "from folium import raster_layers\n", "from folium import plugins\n", "from folium import branca" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "image = '/notebooks/resources/gpm/gpm_1d.20190531.tif'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10.0 -180.0\n", "-60.0 -180.0\n", "-60.0 -30.0\n", "10.0 -30.0\n", "ext = [[10.0, -180.0], [-60.0, -180.0], [-60.0, -30.0], [10.0, -30.0]]\n", "geo_ext = [[10.0, -180.0], [-60.0, -180.0], [-60.0, -30.0], [10.0, -30.0]]\n" ] } ], "source": [ "from osgeo import gdal,ogr,osr\n", "\n", "def GetExtent(gt,cols,rows):\n", " ''' Return list of corner coordinates from a geotransform\n", "\n", " @type gt: C{tuple/list}\n", " @param gt: geotransform\n", " @type cols: C{int}\n", " @param cols: number of columns in the dataset\n", " @type rows: C{int}\n", " @param rows: number of rows in the dataset\n", " @rtype: C{[float,...,float]}\n", " @return: coordinates of each corner\n", " '''\n", " ext=[]\n", " xarr=[0,cols]\n", " yarr=[0,rows]\n", "\n", " for px in xarr:\n", " for py in yarr:\n", " x=gt[0]+(px*gt[1])+(py*gt[2])\n", " y=gt[3]+(px*gt[4])+(py*gt[5])\n", " ext.append([y,x])\n", " print (y,x)\n", " yarr.reverse()\n", " return ext\n", "\n", "def ReprojectCoords(coords,src_srs,tgt_srs):\n", " ''' Reproject a list of x,y coordinates.\n", "\n", " @type geom: C{tuple/list}\n", " @param geom: List of [[x,y],...[x,y]] coordinates\n", " @type src_srs: C{osr.SpatialReference}\n", " @param src_srs: OSR SpatialReference object\n", " @type tgt_srs: C{osr.SpatialReference}\n", " @param tgt_srs: OSR SpatialReference object\n", " @rtype: C{tuple/list}\n", " @return: List of transformed [[x,y],...[x,y]] coordinates\n", " '''\n", " trans_coords=[]\n", " transform = osr.CoordinateTransformation( src_srs, tgt_srs)\n", " for x,y in coords:\n", " x,y,z = transform.TransformPoint(x,y)\n", " trans_coords.append([x,y])\n", " return trans_coords\n", "\n", "raster=image\n", "ds=gdal.Open(raster)\n", "\n", "gt=ds.GetGeoTransform()\n", "cols = ds.RasterXSize\n", "rows = ds.RasterYSize\n", "\n", "ext=GetExtent(gt,cols,rows)\n", "print(\"ext = \" + str(ext))\n", "\n", "src_srs=osr.SpatialReference()\n", "src_srs.ImportFromWkt(ds.GetProjection())\n", "# tgt_srs=osr.SpatialReference()\n", "# tgt_srs.ImportFromEPSG(3857)\n", "tgt_srs = src_srs.CloneGeogCS()\n", "\n", "geo_ext=ReprojectCoords(ext,src_srs,tgt_srs)\n", "print(\"geo_ext = \" + str(geo_ext))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Driver: GTiff/GeoTIFF\r\n", "Files: /notebooks/resources/gpm/gpm_1d.20190531.tif\r\n", " /notebooks/resources/gpm/gpm_1d.20190531.tif.aux.xml\r\n", "Size is 1500, 700\r\n", "Coordinate System is:\r\n", "GEOGCS[\"WGS 84\",\r\n", " DATUM[\"WGS_1984\",\r\n", " SPHEROID[\"WGS 84\",6378137,298.2572326660159,\r\n", " AUTHORITY[\"EPSG\",\"7030\"]],\r\n", " AUTHORITY[\"EPSG\",\"6326\"]],\r\n", " PRIMEM[\"Greenwich\",0],\r\n", " UNIT[\"degree\",0.0174532925199433],\r\n", " AUTHORITY[\"EPSG\",\"4326\"]]\r\n", "Origin = (-180.000000000000000,10.000000000000000)\r\n", "Pixel Size = (0.100000000000000,-0.100000000000000)\r\n", "Metadata:\r\n", " AREA_OR_POINT=Area\r\n", " TIFFTAG_DATETIME=2019:06:01 13:35:13\r\n", " TIFFTAG_DOCUMENTNAME=/NRTPUB/imerg/gis/2019/05/3B-HHR-L.MS.MRG.3IMERG.20190531-S233000-E235959.1410.V06B.1day.tif\r\n", " TIFFTAG_IMAGEDESCRIPTION=DOI=10.5067/GPM/IMERG/3B-HH-L/06 DOIauthority=http://dx.doi.org/ DOIshortName=3IMERGHH_LATE Unit=0.1(mm) ScaleFactor=10\r\n", " TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)\r\n", " TIFFTAG_SOFTWARE=IDL 8.7.2, Harris Geospatial Solutions, Inc.\r\n", " TIFFTAG_XRESOLUTION=100\r\n", " TIFFTAG_YRESOLUTION=100\r\n", "Image Structure Metadata:\r\n", " COMPRESSION=LZW\r\n", " INTERLEAVE=BAND\r\n", "Corner Coordinates:\r\n", "Upper Left (-180.0000000, 10.0000000) (180d 0' 0.00\"W, 10d 0' 0.00\"N)\r\n", "Lower Left (-180.0000000, -60.0000000) (180d 0' 0.00\"W, 60d 0' 0.00\"S)\r\n", "Upper Right ( -30.0000000, 10.0000000) ( 30d 0' 0.00\"W, 10d 0' 0.00\"N)\r\n", "Lower Right ( -30.0000000, -60.0000000) ( 30d 0' 0.00\"W, 60d 0' 0.00\"S)\r\n", "Center (-105.0000000, -25.0000000) (105d 0' 0.00\"W, 25d 0' 0.00\"S)\r\n", "Band 1 Block=1500x2 Type=UInt16, ColorInterp=Gray\r\n", " Min=0.000 Max=2237.000 \r\n", " Minimum=0.000, Maximum=2237.000, Mean=34.214, StdDev=111.334\r\n", " Metadata:\r\n", " STATISTICS_MAXIMUM=2237\r\n", " STATISTICS_MEAN=34.214233333333\r\n", " STATISTICS_MINIMUM=0\r\n", " STATISTICS_STDDEV=111.33382267193\r\n" ] } ], "source": [ "!gdalinfo '/notebooks/resources/gpm/gpm_1d.20190531.tif'" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# !gdal_edit -colorinterp_1 alpha /notebooks/resources/gpm/gpm_1d.20190531.tif" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Choose colormap\n", "cmap = colorcet.cm.fire\n", "\n", "# Get the colormap colors\n", "my_cmap = cmap(np.arange(cmap.N))\n", "\n", "\n", "# Set alpha\n", "my_cmap[:,-1] = np.linspace(0, 1, cmap.N)\n", "\n", "# Create new colormap\n", "my_cmap = ListedColormap(my_cmap)\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m = folium.Map(\n", " location = [-22, -114]\n", " , zoom_start = 2\n", " , control_scale = True \n", " , tiles = 'Stamen Terrain'\n", ")\n", "\n", "data = matplotlib.pyplot.imread(image)\n", "\n", "# Image bounds on the map in the form\n", "# [[lat_min, lon_min], [lat_max, lon_max]]\n", "m.add_child(raster_layers.ImageOverlay(\n", " data\n", " , opacity = 0.7\n", " , bounds = [ext[2], ext[0]]\n", " , mercator_project = True\n", "# , colormap = lambda x: (1, 0, 0, x)\n", " , colormap = colorcet.cm.fire\n", "# , colormap = branca.colormap.linear.PuBuGn_07.scale(0,700)\n", "# , colormap = my_cmap\n", ")\n", " )\n", "\n", "folium.Marker(\n", " ext[2]\n", " , popup = str(ext[2])\n", " , tooltip = str(ext[2])\n", ").add_to(m)\n", "\n", "folium.Marker(\n", " ext[0]\n", " , popup = str(ext[0])\n", " , tooltip = str(ext[0])\n", ").add_to(m)\n", "\n", "m" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'_children': OrderedDict([('stamenterrain',\n", " ),\n", " ('image_overlay_92155413a6b84d5387a381702772f37a',\n", " ),\n", " ('marker_ac7d26db7daf4a5789ade1e0b5287481',\n", " ),\n", " ('marker_29b98858dab84a42ba7fd08322bdfefe',\n", " )]),\n", " '_env': ,\n", " '_id': '5302fb64bbe34b86b83a04708129f218',\n", " '_name': 'Map',\n", " '_parent': ,\n", " '_png_image': None,\n", " 'control_scale': True,\n", " 'crs': 'EPSG3857',\n", " 'global_switches': ,\n", " 'height': (100.0, '%'),\n", " 'left': (0.0, '%'),\n", " 'location': [-22, -114],\n", " 'max_bounds': False,\n", " 'max_lat': 90,\n", " 'max_lon': 180,\n", " 'min_lat': -90,\n", " 'min_lon': -180,\n", " 'no_wrap': False,\n", " 'objects_to_stay_in_front': [],\n", " 'png_enabled': False,\n", " 'position': 'relative',\n", " 'top': (0.0, '%'),\n", " 'width': (100.0, '%'),\n", " 'world_copy_jump': False,\n", " 'zoom_control': True,\n", " 'zoom_start': 2}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vars(m)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 2 3 3 ... 0 0 0]\n", " [ 4 6 3 ... 0 0 0]\n", " [10 9 3 ... 0 0 0]\n", " ...\n", " [ 0 0 0 ... 0 0 0]\n", " [ 0 0 0 ... 0 0 0]\n", " [ 0 0 0 ... 1 0 0]]\n", "(700, 1500)\n" ] } ], "source": [ "print(data)\n", "print(data.shape)\n", "# data = data.transpose()\n", "# print(data)\n", "# print(data.shape)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "## ds ##:\n", "\n", " >\n", "\n", "\n", "## data ##:\n", "\n", "[[ 2 3 3 ... 0 0 0]\n", " [ 4 6 3 ... 0 0 0]\n", " [10 9 3 ... 0 0 0]\n", " ...\n", " [ 0 0 0 ... 0 0 0]\n", " [ 0 0 0 ... 0 0 0]\n", " [ 0 0 0 ... 1 0 0]]\n", "\n", "\n", "## gt ##:\n", "\n", "(-180.0, 0.1, 0.0, 10.0, 0.0, -0.1)\n", "\n", "\n", "## proj ##:\n", "\n", "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.2572326660159,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.0174532925199433],AUTHORITY[\"EPSG\",\"4326\"]]\n", "\n", "\n", "## inproj ##:\n", "\n", "GEOGCS[\"WGS 84\",\n", " DATUM[\"WGS_1984\",\n", " SPHEROID[\"WGS 84\",6378137,298.2572326660159,\n", " AUTHORITY[\"EPSG\",\"7030\"]],\n", " AUTHORITY[\"EPSG\",\"6326\"]],\n", " PRIMEM[\"Greenwich\",0],\n", " UNIT[\"degree\",0.0174532925199433],\n", " AUTHORITY[\"EPSG\",\"4326\"]]\n" ] } ], "source": [ "# First: read the geotiff image with GDAL.\n", "from osgeo import gdal, osr\n", "\n", "gdal.UseExceptions()\n", "\n", "ds = gdal.Open(image)\n", "data = ds.ReadAsArray()\n", "gt = ds.GetGeoTransform()\n", "proj = ds.GetProjection()\n", "\n", "inproj = osr.SpatialReference()\n", "inproj.ImportFromWkt(proj)\n", "\n", "print('\\n\\n## ds ##:\\n\\n' + str(ds))\n", "print('\\n\\n## data ##:\\n\\n' + str(data))\n", "print('\\n\\n## gt ##:\\n\\n' + str(gt))\n", "print('\\n\\n## proj ##:\\n\\n' + str(proj))\n", "print('\\n\\n## inproj ##:\\n\\n' + str(inproj))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 0, 0, 0)\n" ] } ], "source": [ "q = lambda x: (0, 0, 0, 0)\n", "print(q(0))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0.72312, 0.11873, 1.0, 1.0)\n", "(0.72312, 0.11873, 1.0)\n" ] } ], "source": [ "cmap = colorcet.cm.bmw\n", "\n", "rgba = cmap(0.5)\n", "print(rgba) # (0.99807766255210428, 0.99923106502084169, 0.74602077638401709, 1.0\n", "print(rgba[:-1])\n", "\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+0XWWd3/H359x7k/BTIkGgJAprTB1TVMA06KKjFGVNQAudgtPAaGWWTpxZRPFXXTCdotLVNXXa6rQl/rgVKjoqOvhjRRubsgZYjrMUEyDgJIjNoqME6ED4JSgkufd++8feNx4P5569z7l7n2ffcz+vtfZa55y97/M8B777m32e/eznUURgZmaLSyt1A8zMbPic/M3MFiEnfzOzRcjJ38xsEXLyNzNbhJz8zcwWodLJX9KYpLskfbvLvqWSviJpj6TbJZ1cZSPN6uTYtsWonyv/K4B759j3DuCJiHgp8AngY/NtmNkQObZt0SmV/CWtBN4EfHaOQy4Ebshf3wS8QZLm3zyzejm2bbEaL3ncnwMfAo6aY/9JwAMAETEl6SngWGBf+0GSNgIbAWiNv1rLjhmgyfPzquPKfuXq3f3IwST1Hvvs00nqBdjHgX0Rcdxc+1tHrwymnissJ559bFtErK+0cZmaYnt5DU3t7egl4jdWzfmfujZ37fl/Q6+z3RlrTk5S7x133DFnbJeNa6g1tnsqzISS3gw8EhF3SDp7PpVFxCQwCdA64rhYsuai+RQ3kNv+cMXQ65x13LUPJan3op23JKkX4DP89Kc9D5h6jvGXXVBYzsGd/6Py/3H1xfaLYtmpw4/tf7Jqgm98YtPQ6z3igv8w9Drb7dhxfZJ6Jc0d2yXjGuqJ7TLKXAafBVwg6XxgGXC0pL+IiLe2HfMgsArYK2kceAHwWOWttdEjodZYqtod21aPtHFdSmGff0RcFRErI+JkYANwS8fJAbAFeHv++uL8GM8YZyWI1viSwq0Ojm2rT7m4riu2yxi4A1zSNcCOiNgCXAd8QdIe4HGyE8msWAOvkBzbNm8NjOtOfSX/iLgNuC1/fXXb588Bb6myYbY4CNBY+pPEsW1Vakpc95Ju6IsZgESr4VdIZn1bAHHt5G/JNf3nsdkgmh7XTv6W1gLoGzXr2wKIa0/sZkkJ0RqfKNxKlSWtl3RfPg/PlV32v0TSX0m6R9Jt+dO9ZpUrG9cpY9vJ39LKr5CKtuJiNAZsBs4D1gCXSFrTcdh/Aj4fEa8ErgH+tOJvY5YpGdcpY9vJ35Kr4gQB1gF7IuL+iDgA3Eg2L0+7NcDs4863dtlvVpmqkj81xbaTv6UlobGxwg1YIWlH27axo6RDc/Dk9uaftbsb+Bf5698BjpJ0bB1fyxa5knGdMrZ9w9eSEqVHReyLiLXzrO6DwLWSLgO+SzZ1w/Q8yzR7nj7iGhLFtpO/paUWY9U84j47B8+slflnh0TEQ+RXR5KOBC6KiCerqNzs16jFeHVTN9QS207+lpYqGw+9HVgt6RSyE2MDcOmvVSWtAB6PiBngKiDNdJA28lRdXENNse0+f0tKVDPaJyKmgE3ANrJVub4aEbskXSNpdm7ds4H7JP0EOB749/V8K7O++vx7qiu2feVvyVV1hRQRW4GtHZ+1z9NzE9lqXGb1qvbKv5bYdvK3tBbAk5Bm/Wt+XDv5W2LNP0nM+idQs+Payd+SkkRrIt2CFmZ1kMT4kqWpm9GTk7+l5W4fG0ULIK6d/C25pp8kZoNQq9mDKZ38LblWS6mbYFYpqflxXfhPk6Rlkn4o6W5JuyR9tMsxl0l6VNLOfHtnPc21USMJtYq3mup2bFtNRKjclkqZK//9wDkR8YykCeB7kr4TET/oOO4rEbGp+ibaqBsbS/bz2LFttZBgyUSzuzMLk39EBPBM/nYi36LORtkiImq7si/i2LY6pYrrskpdckkak7QTeAS4OSJu73LYRfkqMjdJWtVlv9nzZLMfpun2Ace21aRkd2bKfyBKJf+ImI6I08hmk1sn6dSOQ74FnJyvInMzcEO3ciRtnJ2zOqaem0+7bWSIloq3utQR20w9W1t7bWEQlIrrOmO7SF+drfkUobcC6zs+fywi9udvPwu8eo6/n4yItRGxVuPLBmmvjRqlvfKfVWVsM35YvY21BWHBX/lLOk7SMfnrw4BzgR93HHNi29sLyGaeMysl4Wgfx7bVIoCZklsqZUb7nAjckC8i3CKbTvTbkq4BdkTEFuA9+dSiU8DjwGV1NdhGiwRj48mufhzbVouWYOmSBf6QV0TcA5ze5fP26USvIltAwKxvStTv6di22ihtl04ZfsLXkpLU+CchzQbR9Lhu9u8SWxSq6vOXtF7SfZL2SLqyy/4XS7pV0l350M3zK/8yZvxqeocyW7nyqo9tJ39Lrorkn/fbbwbOA9YAl0ha03HYn5D1659Otg7qJyv+KmaHVDXap67YdrePpSWqGuu8DtgTEfcDSLoRuBDY3XZMAEfnr18APFRFxWadApiubihPLbHt5G9JCdEaL/UDdIWkHW3vJyNisu39ScADbe/3Amd2lPER4H9LejdwBPDG/ltsVqwlsWxp6fSaJLad/C2t8lPf7ouItfOs7RLgcxHxnyW9FviCpFMjIuVwaxtRfdzwTRLbTv6WXEVDPR8E2ufdWZl/1u4d5E/wRsT3JS0DVpDN62NWGQlU3R3VWmLbN3wtqWxit+KthO3AakmnSFpCdtNrS8cxPwPeACDp5cAy4NHKvoxZmwqnd6gltn3lb2lVtOJRRExJ2gRsA8aA6yNiV8fTuh8A/ruk95HdILssn9bZrFIBTFcUWnXFtpO/JSZaFS3mEhFbga0dn7U/rbsbOKuSysx6aEksW1Jdeq0jtp38LamFsNapWd8WQFw7+VtyTZ8DxaxfwsnfrCcJxhp+kpj1T42Payd/S67pJ4lZvxbCRY2TvyWlBXCFZNavKkf71MXJ35KSYEm56R3MFowxwVHLmp1em906G3kSjPvK30aMpMbHtZO/JSWa3zdqNoimx7WTv6Ul9/nb6Mlu+Da7O7OwdZKWSfqhpLsl7ZL00S7HLJX0lXyVmdslnVxHY230ZFf+rcKtlrod21aT2V+0ZbZUylz57wfOiYhnJE0A35P0nYj4Qdsx7wCeiIiXStoAfAz4lzW010ZQwhPAsW21CGBqZoGP9sknB3omfzuRb53f6kKyxQQAbgKulSRPmmVFWlKy0T51xnaKyI+A+OWTw684sbds/pvUTXieljQao33yNSTvAF4KbI6I2zsOObTSTD4D3VPAscC+jnI2AhsBli4/ntf+3qXza/0Ajvqnhw+9zll7n/hCknrf9M8niw+qy0d+u/CQsWrm8x9IHbF95LEncMkVf1B305/nt44PJk5cVXxgxZ7+0rvQ4ccMvV6AS7/ROa19MwgYr3BC/zqUal1ETEfEaWSLCKyTdOoglUXEZESsjYi1E0ekCRZrltknIVP1i9YR28uOXl5tI23Bkcr196fs8+/rn6aIeBK4lXzFmDaHVpqRNE62gPBjVTTQRl8TThDHtlVtwSd/ScdJOiZ/fRhwLvDjjsO2AG/PX18M3OL+fitj9iGvoq1cWVov6b58ZM6VXfZ/QtLOfPuJpKcc21aX6ZkotZUxQGwX3vwp0+d/InBD3jfaAr4aEd/uWEXmOrIFg/cAj5MtM2ZWSFRzwzePz81kCXwvsF3SlnyRCwAi4n1tx78bOAe41bFtVWtVOL3DgLF9elG5ZUb73NOtoI5VZJ4D3lJUllmnCmc/XAfsiYj7s3J1I9lInd1zHH8J8OGIuLlzh2Pb5kvVPrw4UGwXFdrssUg28vqY3mGFpB1t7ycjon0Y06FRObm9wJld65ReApwC3NJfa83K6XPakiSx7eRvaZW/8t8XEWsrqnUDcFNETFdUntmv6+8XbZLYdvK3pCqcz//QqJzcyvyzbjYAl1dRqVk3FU9YWEtsO/lbchWdJNuB1ZJOITsxNgDPe4pQ0m8Cy4HvV1GpWTcBTFU3KKyW2Hbyt6RaFS3mkj99uwnYBowB10fEro6RO5CdODd6uKbVaUziqKXVpNe6YtvJ39KqcK3TiNgKbO347OqO9x+ppDKzXipew7eO2Hbyt6SEks7tY1YHkXbOqjKc/C25VsNPErNBNH2NIid/Syq7QkrdCrNq+crfrIig1fRLJLM+jcRiLmZ1EjDR8LVOzfrVkjhiyVjqZvTk5G9JudvHRpG7fcyKSO72sdGzALoznfwtKeHRPjZ6srhO3YrenPwtOXf72KiJoPRCLak4+VtSEkyM+YavjZZWSxy+pNnptdmts5Hnbh8bRQthIIOTvyXX9JPEbBBN7/Mvs4D7Kkm3StotaZekK7occ3a+GPbsAsJXdyvLrJMQLRVvtdTt2LaazP6iTRXbZZS58p8CPhARd0o6CrhD0s3tiwfn/joi3lx9E22kVTz7YZ8c21aPtHFdSpkF3B8GHs5fPy3pXrI1JedaPNistJRD4hzbVpuA6ekRGu0j6WTgdOD2LrtfK+lu4CHggxGxq8vfbwQ2Aixdfny/bbUR1JTpHaqM7SOPPaG+htqC0JI4vOHTO5Q+6yQdCXwNeG9E/Lxj953ASyLiVcB/A77ZrYyImIyItRGxduKIYwZts40SwVireCtVlLRe0n2S9ki6co5jfretj/9L+WeVxvayo5eXa7CNtJbKbWUMGtu9lLrylzRBdnJ8MSK+3rm//YSJiK2SPilpRUTsK1O+LV5VDfWUNAZsBs4F9gLbJW1p77+XtBq4CjgrIp6Q9CLHttVC1Q1hHjS2i8otM9pHwHXAvRHx8TmOOSE/Dknr8nIfK/5aZtlKXkVbCeuAPRFxf0QcAG4ELuw45g+AzRHxRP7+URzbVoPZid1SxXZEPFJUaJkr/7OAtwE/krQz/+yPgRfnlXwauBj4I0lTwLPABi+QbWX0ceW/QtKOtveTETHZ9v4k4IG293uBMzvK+IcAkv6GbCHsv8SxbTUIYLp8mNQR2x+JiP/Vq9Iyo32+R3aO9jrmWuDaorLMOmXTO5RK/vsiYu08qxsHVgNnAyuB7wLLI+LJuf7AsW2DaEkcNlH6hm8tsS3pFb1iO/0wC1v0pOKthAeBVW3vV+aftdsLbImIgxHxf4GfkJ0wZpUrE9cpY9vJ35JrocKthO3AakmnSFoCbAC2dBzzTbIrIyStIPupfH9138QsI8rFdcrYdvK3pEQ1V0cRMQVsArYB9wJfjYhdkq6RdEF+2DbgMUm7gVuBfx0Rvnlrtajqyr+u2PbEbpZcVU/4RsRWYGvHZ1e3vQ7g/flmVqsqn1yvI7ad/C2t8v2eZguKF3Mx60GUHutstmAIWNLwRYqc/C25hk9+aNa/PqZuSMXJ35Jr+Dli1jfR/Lh28rekvIyjjaqmx7WTvyXX8HPEbCBNj2snf0uu2bfFzAYz49E+ZnPTAljuzqxfEiwZb/ZljZO/Jdf0n8dmg2h6WDv5W1LZHChmo6fpFzVO/pacmn6WmPVpds6qJnPyt7QWwMMwZgPxDV+zuWXL3aVuhVm1hBj39A5mvbnbx0ZR08O6zALuqyTdKmm3pF2SruhyjCT9V0l7JN0j6Yx6mmujJnvCt3irpW7HttVIJbdUyvwumQI+EBFrgNcAl0ta03HMeWRLhq0GNgKfqrSVNtKqOkEkrZd0X56or+yy/zJJj0ramS/Y/rs4tq0OJRdyKfvroN/YlvTOojLLLOD+MPBw/vppSfeSrSa/u+2wC4HP5wsK/EDSMZJOzP/WrAdVMgeKpDFgM3Au2Xqm2yVtiYjdHYd+JSI2df69Y9uqNLuMYyVlzTO259JXn7+kk4HTgds7dp0EPND2fm/+2a+dIJI2kl09sXT58f1UbaOqusVc1gF7IuJ+AEk3kiXuzhOkezMqjO0jjj2B/VPTfX+B+ZqegakE9X7rzoe44+8fKD6wBr84eDRHjC9JUnexykb7zCu251I6+Us6Evga8N6I+PkglUXEJDAJ8PJXnhZ/+junDlLMvPziuMOGXues8546L0m9t131W0nqBTj6I733KwLNlEpYKyTtaHs/mcfTrG5J+swu5Vwk6XXAT4D3RcQDVcf2K047I65+08sHKWZejpgQM4cNPxF+8ZFjUaKBLb931km8Zd2Lk9T9tXf32hu0yif/2mK7V6Wlkr+kCbKT44sR8fUuhzwIrGp7vzL/zKyQYqbMYfsiYu08q/oW8OWI2C/pXcANkn4bx7ZVLYBycQ01xTZwTq8/KDPaR8B1wL0R8fE5DtsC/Kt8ZMRrgKfcJ2rlRHaSFG3FCpN0RDwWEfvzt58FXo1j2+oSUW4rNmhs91Tmyv8s4G3Aj/IREgB/DLw4r/TTZKvKnw/sAX4J/H6Jcs0y5U6AItuB1ZJOITsxNgCXth/QcaP2ArKfz45tq0llff6DxPa9RYWWGe3zPQpG2+UjIS4vKsvseSL6+Xnco5iYkrQJ2AaMAddHxC5J1wA7ImIL8B5JF5ANX34cuCgiflxQrmPbBhComouaQWP7sqJy/YSvJVeyz79QRGwlu1Jv/+zqttdXAVdVUplZLxHE9MEKi6s+tp38LbGAmanUjTCrVnVDmGvj5G9p9TcqwmxhCKq6l1UbJ39LLGDGyd9GkJO/WW9V9fmbNYmqG+1TCyd/S8/J30ZNzBAHD6RuRU9O/pZWBJSb3sFs4ZDQ2FjqVvTk5G/JudvHRo2Cysb518XJ3xKr5iEvs2Zpflw7+Vt6DT9JzAbjK3+zuVU0vYNZ47jbx2xuwn3+NoJiBg4+l7oVPTn5W2IB0x7tYyNGgrGJ1K3oycnf0vL0Djai/JCXWQF3+9jI8dw+ZkV8w9dGlJO/WQEnfxtJzU7+hWv4mtVqdnqHoq0ESesl3Sdpj6Qrexx3kaSQNN9Fs826i2niuV+U2sqoI7bLLOB+vaRHJP3tHPvPlvSUpJ35dnW348y6C2LqYOFWRNIYsBk4D1gDXCJpTZfjjgKuAG4H/q1j22qhFkwsLbcVFTVYbBcqc+X/OWB9wTF/HRGn5ds1ZSo2A7JfxtVc+a8D9kTE/RFxALgRuLDLcf8O+BjwHPBtHNtWh9mHF8tsxQaJ7UKFyT8ivku2ILBZ5YIgpqcLN2CFpB1t28aOok4CHmh7vzf/7BBJZwCrIuJ/5h/dhWPb6jIT5bZ6YrtQVTd8XyvpbuAh4IMRsavbQfmX2ghwwkkrK6raFrSg7Epe+yJi4D56SS3g48Blff5p37H9D1auGrSZNkrKj/ZJEttVJP87gZdExDOSzge+CazudmBETAKTAC9/5WnNvhVuQ1LZfP4PAu1Zd2X+2ayjgFOB25StrH0CsAV4V48yB4rtV5x2hmN7kYuZaeLZn1dV3ECxLemCiNgxV6HzTv4R8fO211slfVLSiojYN9+ybRGIKHVDt4TtwGpJp5CdGBuAS39VTTwFrJh9L+k24IPAnHHq2LaBqQVLDq+qtIFiu1fihwqGeko6Qfk/N5LW5WU+Nt9ybbGI7CqpYCssJWIK2ARsA+4FvhoRuyRdI+mCQVrm2Lb5iIhSW4lyKo9tKHHlL+nLwNlkNyX2Ah8GJvJGfRq4GPgjSVPAs8CGKPONzOBXo32qKCpiK7C147OuwzMj4mzHttWqwocX+43tMmUWJv+IuKRg/7XAtWUqM3u+KHvDt/qaHdtWp4ZfJnh6B0srmB3KaTY6FsAiRU7+llhlo33MmmNmmvjFk6lb0ZOTv6VV3Wgfs+ZojaHDjk7dip6c/C0xX/nbKHK3j1lvFY72MWuUhg8Mc/K3pIIgEo32MauNV/IyK+Arf7MknPwtrQji4IHUrTCrXNN/0Tr5W2LpHvIyq0/Q9Ke8nPwtPXf72Chyn79ZDxGlJm4zW2ganvud/C29pveNmg2m2dnfyd/SiiCmnfxttMTUFNNPNnv2byd/SyoimDk4lboZZpXS2Dito45N3Yye5r2Yi9m8BMT0TOFWhqT1ku6TtEfSlV32/6GkH0naKel7ktZU/n3MmH3Gq5rFXKCe2Hbyt+SqSP6SxoDNwHnAGuCSLifAlyLiFRFxGvBnZItem9UiSm5F6optd/tYUhHBTDXz+a8D9kTE/QCSbgQuBHa31dW+ovYRNP2OnC1s1Q33qSW2nfwtuZKjfVZIal+QejIiJtvenwQ80PZ+L3BmZyGSLgfeDywBzum/tWYl9PeMV5LYLrOG7/XAm4FHIuLULvsF/BfgfOCXwGURcWdRuWZAP6N99kXE2vlXF5uBzZIuBbZKegGObatYTB9k6olHyx5eR2z/CfD2XseXufL/HNk6pp+fY/95wOp8OxP4FF3+VTLrpsLRPg8Cq9rer8w/m8uNwCTwOhzbVjGNTdA65riqihsktj9VVGjhDd+I+C7weI9DLgQ+H5kfAMdIOrGoXLNZM9MzhVsJ24HVkk6RtATYAGxpP0DS6ra3bwJ+jGPb6lLVHd/BYvv/FBVaRZ9/t/6ok4CHOw+UtBHYCHDCSSsrqNoWvHyo57yLiZiStAnYBowB10fELknXADsiYguwSdIbgYPAExT8LGYesf3Uc8N/dmHs4DQHDzwz9HpnpqfIesiGL2ZmmJlu6HMiFd3vrSm2h3vDN7+JMQnwm684LQ5OD3+wxYPvuWTodc66Ztv9Sepd8qHvJqm3lAqf8I2IrcDWjs+ubnt9ReffSDq5oroPxfapp50RRy4Z/liK/Xt/xtgLDx96vTe8/giWrTx56PUCMDHGeCvNPzzDNEhsF6kiQvvtjzI7JGj03D6ObRvIzNRBDjz+SOpm9FRF8p/9yXEj2c2wpyLieT+LzbqKYOZAQ3+2O7ZtQBqfYHz5i1I3o6cyQz2/DJxNNhZ1L/BhYAIgIj5N9lPkfGAP2XC436+rsTaCAmYSXfk7tm0xK0z+EdGzkzyyySkur6xFtqgE6Wb1dGzbYuYnfC2tgKhmegezhmn2jWgnf0ssmnzD12xkOflbWhWN8zdrkjh4kAOP/n3qZvTk5G9JRQTTzR3tYzYQjU8wvuKE1M3oycnfEnO3j1kKTv6Wlrt9zJJw8re0AiLBNB9m9fNoH7M5BVF21k4zq5CTv6UVEDO+8rfRElNTHHi09GIuSTj5W1IRMH3AD3nZaNH4BBPHebSP2dwi3Odvo0dAojUOyipcycusbjPTUbiVIWm9pPsk7ZF0ZZf975e0W9I9kv5K0ksq/zJmh6jkVqKkGmLbyd/Syod6Fm1FJI0Bm8nW3V0DXCJpTcdhdwFrI+KVwE3An1X8bcwqV1dsu9vHkgpgppobvuuAPRFxP0A+B/+FwO5DdUXc2nb8D4C3VlGxWaeZg1Psf3RfVcXVEttO/pZWRFU3fLutt3tmj+PfAXyniorNOrUmJlj6ouOrKq6W2Hbyt6Si/ENeKyTtaHs/ma+b2zdJbwXWAq8f5O/NSil/vzdJbDv5W1rlk/++iFjbY3+p9XYlvRH4N8DrI2J/P00164tK31JNEttO/pZYZU/4bgdWSzqF7MTYAFzafoCk04HPAOsjotmra9sIqGyoZy2xXeqfphLDjC6T9Kiknfn2zjLlms0+4Vu0FRYTMQVsArYB9wJfjYhdkq6RdEF+2H8EjgT+Mo/TLY5tq4eycf5ltgKDxnZRuWUWcJ8dZnQu2Y2G7ZK2RMTujkO/EhGbCr+JWZuA0uP4C8uK2Eq26Hr7Z1e3vX5j+748tn+CY9sqNjM1xf59lY326Tu2yyjT7VM4zMhsYBHMpJvewbFttWhNjFc52qcWZbp9ug0zOqnLcRflT5fdJGlVl/1mzxNR3RO+A3BsW42qe8K3DlU94fst4OT86bKbgRu6HSRpo6QdknY8+fhjFVVtC13MzBRuCfUd2088Vt3PfVuoBK2SWyJlkn/hMKOIeKxtaNFngVd3KygiJiNibUSsPeaFxw7SXhs1UXzVX+OVfy2xvfzYFbU01haahX/lf2iYkaQlZMOMfu1OsqQT295eQHZH2qxYPs6/aKuJY9vqo1a5LZHCG74RMSVpdpjRGHD97DAjYEdEbAHekw85mgIeBy6rsc02QoJ0a/g6tq0uM9PTHHj8idTN6KnUQ14lhhldBVxVbdNsUYhg+kC6Pn3HttWhNT7OsuOa3f3nJ3wtqQiYCS/mYiMo4c3cMpz8LblpJ38bNQtgJS8nf0sqAK/iaKNHSW/mluHkb8n5yt9GTUxPs//pp1M3oycnf0tqJuBANSt5mTWGxsdY+sLlqZvRk5O/JeduHxs9Qi13+5jNKQh3+9joER7tY9aLb/jayPINX7PenPxt9DR/tE+zW2cjLyIb7VO0lVFiVa7XSbpT0pSkiyv/Mma5mJlh6tlfltrKqCO2feVvSQXVjPYpueLcz8jm5vngvCs066E1NsaSFxxdSVl1xbaTvyVVYZ9/4apcEfF3+b6kCwTYIiCgutE+tcS2k78lV7JbZ4WkHW3vJyNisu19t1W5zqygeWYDaZWf3iFJbDv5W1JZn3+pQ/dFxNqam2NWEfVz5Z8ktp38LbmKxvkXrsplNjTVdvvUEttO/pZUABV1wB9alYvsxNgAXFpN0WZ9imBmaqqq0mqJbSd/SyqISkb7lFmVS9I/Br4BLAf+maSPRsQ/mnflZh3UajFx+LJKyqortp38LalstE81w31KrMq1newns1ntqpzbp47YdvK3tMrf8DVbONT8id1Kta7E02VLJX0l33+7pJOrbqiNptkr/yqe8B2EY9vqolar1JZKYc1tT5edB6wBLpG0puOwdwBPRMRLgU8AH6u6oTa6pqN4q4Nj2+qi/Mp/QSd/2p4ui4gDwOzTZe0uBG7IX98EvEFq+AKW1ggzZNM7FG01cWxbbcbGxkptqZTp8y/zdNmhY/I7008BxwL72g+StBHYmL/d/7rfWPG3gzS6AivoaNtI13v08nR1w8t67dzHgW2f4acrSpRTR9tri+2XHX9UithO9f84Zd0pv/OcsX3HHXdsk1QmriFR+4d6wzd/ZHkSQNKOVE9spqp7sX7nXvsjYv2w2lKnJsT2Yo2vlN95rn0LIa7LdPuUebrs0DGSxoEXAI9V0UCzGjm2bdEqk/wPPV0maQnZ02VbOo7ZArw9f30xcEuE1+azxnNs26JV2O1T5uky4DrgC5L2AI9bfypoAAACNElEQVSTnURFJosPqU2quv2dG2QEY9vxtXjqnjf5IsbMbPFp9iNoZmZWCyd/M7NFKEnyL3qkvsZ6r5f0iKShjsGWtErSrZJ2S9ol6Yoh1btM0g8l3Z3X+9Fh1NtW/5ikuyR9e5j1puK4Hk5c53U7tudp6Mm/5CP1dfkckGL87RTwgYhYA7wGuHxI33k/cE5EvAo4DVgv6TVDqHfWFcC9Q6wvGcf1UOMaHNvzluLKv8wj9bWIiO+SjdgYqoh4OCLuzF8/TRY0Jw2h3oiIZ/K3E/k2lDv8klYCbwI+O4z6GsBxPaS4zutzbM9TiuTf7ZH6oQRME+SzQp4O3D6k+sYk7QQeAW6OiKHUC/w58CEqW6ir8RzXQ4zrvE7H9jz4hu8QSToS+Brw3oj4+TDqjIjpiDiN7OnVdZJOrbtOSW8GHomIO+quy9JLEdfg2J6vFMl/US60LWmC7AT5YkR8fdj1R8STwK0Mp2/4LOACSX9H1v1xjqS/GEK9KTmuE8Q1OLYHlSL5l3mkfqTkUwBfB9wbER8fYr3HSTomf30YcC7w47rrjYirImJlRJxM9v/3loh4a931Jua4Hm7dju15Gnryj4gpYPaR+nuBr0bErmHULenLwPeBl0naK+kdw6iX7GrhbWRXCTvz7fwh1HsicKuke8iS080RsWCHpjWZ43qocQ2O7Xnz9A5mZouQb/iamS1CTv5mZouQk7+Z2SLk5G9mtgg5+ZuZLUJO/mZmi5CTv5nZIvT/AWShD23TQIGcAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pylab as pl\n", "from matplotlib.colors import ListedColormap\n", "\n", "# Random data\n", "data1 = np.random.random((4,4))\n", "\n", "# Choose colormap\n", "cmap = pl.cm.RdBu\n", "\n", "# Get the colormap colors\n", "my_cmap = cmap(np.arange(cmap.N))\n", "\n", "# Set alpha\n", "my_cmap[:,-1] = np.linspace(0, 1, cmap.N)\n", "\n", "# Create new colormap\n", "my_cmap = ListedColormap(my_cmap)\n", "\n", "pl.figure()\n", "pl.subplot(121)\n", "pl.pcolormesh(data1, cmap=pl.cm.RdBu)\n", "pl.colorbar()\n", "\n", "pl.subplot(122)\n", "pl.pcolormesh(data1, cmap=my_cmap)\n", "pl.colorbar()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00]\n", " [2.7065e-02 2.1430e-05 0.0000e+00 1.0000e+00]\n", " [5.2054e-02 7.4728e-05 0.0000e+00 1.0000e+00]\n", " ...\n", " [1.0000e+00 9.9953e-01 8.7115e-01 1.0000e+00]\n", " [1.0000e+00 9.9989e-01 9.3683e-01 1.0000e+00]\n", " [1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00]]\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X+0nVWd3/H35978UkBAkgKTBIIlajOoMFyDLrpmWChtQIXV4kwDSyuztLEuGfFXZ8F0ikqnq+NMq+OUjM4tUvHHiA46NmqclNawkFYwN/xyEkQzoBJAIQQDiNzk3vvtH+e5mcPJuefZ99znOfvk3M9rrWet82PfvfeB7/nmOfvZz96KCMzMbH4Zyt0BMzPrPSd/M7N5yMnfzGwecvI3M5uHnPzNzOYhJ38zs3koOflLGpZ0l6RvtHlvsaQvSdol6Q5Jq6rspFmdHNs2H83mzP8K4L4Z3ns78GREnAp8HPjoXDtm1kOObZt3kpK/pBXAG4DrZihyEXBD8fgm4HWSNPfumdXLsW3z1YLEcn8G/D5w1AzvLwceAoiICUn7gOOAPc2FJG0ANgAcccQLz3z5y1/STZ/n5Ofb/67nbU47/swzs7S7ffv2LO0W9kTEspneXLduXezZs2emtw/avn37lohYV2nPGgYmtsf3PQ0s7Hm7i48+uudt9oPt27fPGNupcV3UU1dsd1Sa/CW9EXgsIrZLOmcujUXEKDAKMDLyihgb2zSX6rrysQW9/1JOe//YWJZ2M5+o/qTTm3v27GEs4b+LpKWV9egf6hyo2H7wW7cAJ/S83VPOP7/nbfYDSTPGdmpcF/VUHtspUs78zwYulHQBsAR4kaTPR8Rbmso8DKwEdktaABwNPFF5b20ATQK/yNW4Y9tqMgk8mbsTHZUm/4i4CrgKoDg7+mDLlwNgE/A24LvAm4Fvh1eMsyTjwANZWnZsW33GIfLEdarUMf9DSLoGGIuITcCngc9J2gXsBdZX1D8beBMQe3N34nkc2zZ3EzTCpX/NKvlHxC3ALcXjq5tefw747So7ZvPFJP0wiuLYtmpN0A9x3UnXZ/5m1ej/MySz2Zvsu1+0rZz8LbP+G/Yxm7v+j2snf8us/8+QzGYtnPzNOov9MPXTSqqStA74BDAMXBcRf9zy/snA9cAyGmNNb4mI3ZU0bvY81cU11BPbTv6W2STE03OuRdIwsBE4D9gNbJO0KSJ2NhX7L8BnI+IGSecC/xl465wbNzvEVCVxDfXFtpO/ZTYFU7+soqK1wK6IxuRqSTfSWJen+QuyBnh/8Xgr8LUqGjY7REzB1LNV1VZLbHs9f8srpiB+VX7AUkljTceGlpoOrsFT2F281uwe4F8Wj/8FcJSk4+r4WDbfJcZ1xtj2mb9lNgXxXErBPRExMsfGPghcK+ky4FYaSzdMzrFOszamphN7iiyx7eRvmU3B5DNVVDS9Bs+0FcVrB0XEIxRnR5KOBC6OiGwLC9kAiymYrGQ4E2qKbSd/yysCpg5UUdM2YLWkU2h8MdYDlzYXKFZP3BsRUzTW9Lm+iobNDhUQlcQ11BTbHvO3zAJisvwoqyViArgc2EJjV64vR8QOSddIurAodg5wv6QfAscD/6mez2QWMDWVdpTVVFNs+8zf8gqSvgBJVUVsBja3vNa8Ts9NNHbjMqtX0Bj6qaq6GmLbyd8yi0q/JGZ9o6KTmro4+Vt+ff4lMZu9gKn+nkjm5G95BTDp5G8DJoA+D2snf8ssYMobY9kA6vO4dvK3/Lwrog2iPo9rJ3/L6zD4eWw2a4dBXJfO85e0RNL3JN0jaYekj7Qpc5mkxyXdXRzvqKe7NpAiyo8aOLatPsUF35Qjk5Qz/3Hg3Ih4RtJC4DZJ34qI21vKfSkiLq++izbQApjM9vPYsW31CGCqv++hLU3+ERHA9OIrC4ujvwez7PCS6cKYY9tq1ecXfJP+aZI0LOlu4DHg5oi4o02xiyXdK+kmSSvbvG/WXiQcNXFsW21S4jrjvw9JyT8iJiPidBqrya2VdFpLka8DqyLilcDNwA3t6pG0YXrN6scf7+/9La1HopjqWXbU1rxj22owfcE35chkVoNSxRKhW4F1La8/ERHjxdPrgDNn+PvRiBiJiJFly17cTX9tEPXBF8SxbZU73JO/pGWSjikev4DGPpI/aClzYtPTC2msPGeWJt9sH8e21aRYqjzlyCRlts+JwA3FJsJDNJYT/Yaka4CxiNgEvKdYWnSCxs7xl9XVYRsweWf7OLatHiGY6u/bqFJm+9wLnNHm9eblRK+isYGA2exl+unr2LZa9flNXv39T5PND31+G7xZV/o8rvv7LgQbfKmzIhJIWifpfkm7JF3Z5v2TJG2VdFcxdfOCij6F2fMFMKW0I0Edse3kb/lVkPyLcfuNwPnAGuASSWtaiv0hjXH9M2jsg/oX1XwAszYqmudfV2x72Mfyq+bn8VpgV0Q8ACDpRuAiYGdzS8CLisdHA49U0bDZISJgcn9VtdUS207+llcAaWtbLZU01vR8NCJGm54vBx5qer4bOKuljg8D/0vS7wFHAK+fbXfN0ghiUWLZ/Vli28nf8ksb098TESNzbOkS4DMR8V8lvRb4nKTTIryJsNUgPaqyxLaTv+U1vbzD3D0MNK+7s6J4rdnbKe7gjYjvSloCLKWxro9Zdapdz7+W2PYFX8uvmsWvtgGrJZ0iaRGNi16bWsr8FHgdgKR/AiwBHp/7BzBro7qF3WqJbZ/5W34VnCFFxISky4EtwDBwfUTsaLlb9wPAf5f0Phpfu8uKZZ3NKhYwOV5eLKWmmmLbyd/yqnB5h4jYDGxuea35bt2dwNmVNGbWSQhicWLh8vV96ohtJ3/Lz5dbbRAl3sCVi5O/5ZV5Qwuz2vR5XDv5W34+87dBU+1sn1o4+Vt+ff4lMeuKh33MOgj6fvVDs1mLKZh8NncvOnLyt/wmcnfArGpDEC9MLPtUrT2ZiZO/5eULvjaQ1Jju2cec/C0/j/nbIOrzuHbyt/z6/EtiNmuHwS/a0rV9JC2R9D1J90jaIekjbcoslvSlYpeZOyStqqOzNoCmL/iWHTVwbFutqlvbpxYpZ/7jwLkR8YykhcBtkr4VEbc3lXk78GREnCppPfBR4F/V0F8bRPnO/B3bVo+YhP2/zN2LjkqTf7E40DPF04XF0frv1UU0NhMAuAm4VpK8aJaVSt/Mpfqm64ztDFsEREzx5JZv9rzdU84/v+dtPs+OV+Ztv61h0JGJZX9Ra09mkjTmX+whuR04FdgYEXe0FDm400yxAt0+4DhgT0s9G4ANACcdD2xdPafOd2Ptwp43edAfDee5+h9jqTsKVU8jCVvZZRzzryW2T1gEY+vr7vohXvD/HuMFp13V83a3f+C9vPiCN/W8XYDlR72TRUekTqnssT6f7ZO0nn9ETEbE6TQ2EVgr6bRuGouI0YgYiYiRZUd3U4MNpAo2cO9WLbF9jOdRGGlxnfHEZ1abuUTEL4CtFDvGNDm404ykBTQ2EH6iig7agJteAyXzF8SxbZUKimWdE45MUmb7LJN0TPH4BcB5wA9aim0C3lY8fjPwbY/3W7KKZkRIWifp/mJmzpVt3v+4pLuL44eS9jm2rRYxBfufTjsSdBHbpRcSUn6fngjcUIyNDgFfjohvtOwi82kaGwbvAvbS2GbMrFxQyfIORXxupJHAdwPbJG0qNrloNBXxvqbyvwecC2x1bFv1hkAvSizb+Ydkl7F9RlmrKbN97m1XUcsuMs8Bv11Wl1lb1WzgvhbYFREPAEi6kcZMnZ0zlL8E+FBE3Nz6hmPbKlHd78OuYrusUm/gbnml3wizVNJY07GhpaaDs3IKu4vXDiHpZOAU4NvVfRCzZonj/Y0x/yyx7WkJll/aBd09ETFSUYvrgZsiItMdBjbwZreZS5bY9pm/5VfNbJ+Ds3IKK4rX2lkPfLG7zpolqm62Ty2x7TN/y6u67e62AaslnULji7EeuLS1kKSXA8cC362kVbN2YhKe21dVbbXEtpO/5VXRbJ/i7tvLgS3AMHB9ROxombkDjS/OjZ6uafUahuFjE8v+vOO7dcW2k7/lV1EajojNwOaW165uef7haloz6506YtvJ3/Lzev42iLyBu1kH1Y35m/WPwyCunfwtvz7/kpjNnvfwNSvn5G+DZmoCnn0ydy86cvK3vCqa7WPWV7QAFh2XWHimKfv1cvK3vA6DsVGzrviCr1kJJ38bRH1+J4mTv+Xn5G+DJvCZv1lHHvaxQTQ1Cc/094ZvTv6Wly/42iAaWgBLliUW/kmtXZmJk7/l5zN/GzTTe/j2MSd/y8/J3wZRn8d1ygbuKyVtlbRT0g5JV7Qpc06xGfb0BsJXt6vL7BABTCYcNXBsW62mlHZkknLmPwF8ICLulHQUsF3Szc2bBxe+ExFvrL6LNvDynSE5tq0egzDsExGPAo8Wj5+WdB+N/SNn2jzYLF3G2T6ObavN5ATseyx3Lzqa1Zi/pFXAGcAdbd5+raR7gEeAD0bEjjZ/vwHYAHDS8bPtqg2kPpntU2lsn7Covo7a4WF4IXHECYmFd9XalZkk7+Er6UjgK8B7I+KplrfvBE6OiFcB/w34Wrs6ImI0IkYiYmTZ0d122QZNTJYfKSStk3S/pF2SrpyhzO80jfH/VfFatbF9jOdRzHvTN3lVNObfbWx3kpT8JS2k8eX4QkR8tfX9iHgqIp4pHm8GFkpamlK3zXPTwz5z3MBd0jCwETgfWANcImlNS5nVwFXA2RHx68B7HdtWm4qSf7exXVZvymwfAZ8G7ouIj81Q5oSiHJLWFvX29+1t1j8qSP7AWmBXRDwQEfuBG4GLWsr8G2BjREyvtfs4jm2rSyQe5WYd2xFResEh5ffp2cBbge9Lurt47Q+Ak4pGPgW8GXiXpAngV8B6b5BtSaanepZbKmms6floRIw2PV8OPNT0fDdwVksdLwWQ9H9pbIT91zi2rQ4TE/Bk543Zm9QR2x+OiL/t1GjKbJ/bgI6/TSLiWuDasrrM2kq74LsnIkbm2NICYDVwDrACuBU4NiJ+MdMfOLatK8ML4ahfSyy8r5bYlvSKTrGdfMHXrBbV3eT1MLCy6fkKDt0lYzewKSIORMSDwA9pfGHMqlXtBd9aYtvJ3/KrZsx/G7Ba0imSFgHrgU0tZb5G48yI4qLtS4EH5tx/szZiKu1IUEtse06a5RXpUzk7VhMxIelyYAuNMc/rI2KHpGuAsYjYVLz3zyTtpPF74t9FhC/eWj0qWrqhrth28re80i/4llfVmIq5ueW1q5seB/D+4jCrT8XLO9QR207+ll+fr35oNmsTB2DPo7l70ZGTv+UVEPtzd8KsYsOLiKNXJBbOM/Lo5G95eRtHG1SH+6qeZrWrab1+s6z6/KTGyd+yiopm+5j1kwiIjBu1pHDyt7wqnO1j1j/kYR+zMj7zt4FzYD/xaOtNuP3Fyd/y8mwfG0QLFhHHnZRYOHkBuEo5+VteHvO3QeVhH7MOPOZvgyjkC75mZXzmbwPJZ/5mM/NUTxtEsX8/U7sfKi+YkZO/5RUw5Qu+NmgWLiKOPzmxcJ5ZQU7+ll3imuZmh5n+HvZJ2cB9paStknZK2iHpijZlJOnPJe2SdK+k36inuzZwimGfsqMOjm2rT+OCb8qRS8pOXhPAByJiDfAa4N2S1rSUOZ/GlmGrgQ3AJyvtpQ2sAKamyo8UktZJur9I1Fe2ef8ySY9LurvYsP13cGxbTaZQ0pFitrEt6R1ldaZs4P4o8Gjx+GlJ99HYTX5nU7GLgM8WGwrcLukYSScWf2s2s6hm2EfSMLAROI/GfqbbJG2KiJ0tRb8UEZcf0g3HtlUoAqKi2T5zje2ZzGrMX9Iq4Azgjpa3lgPNl7Z3F6897wsiaQONsydOOn42Ldugmj7zr8BaYFdEPAAg6UYaibv1C9JWpbH9j4aIJ34y6w8wV/HEPiZ/2Lq1aw/aXXALPPS1nrcLEL/2M6aeOzZL2x3t38/kTyuLgTnF9kySk7+kI4GvAO+NiKe6aSwiRoFRgJGlivh87+f4veq4njd50D/95qIs7T79hj6eThMwmRYGSyWNNT0fLeJpWrskfVabei6W9JvAD4H3RcRDlcf2qqXBo2/qppo5efFT29Grz+x5u8vPvpOhFx/Z83YBxv/HURxYWjrCUZM/mvmtRYth5UvSqrnrJ7XFdqdmk5K/pIU0vhxfiIivtinyMLCy6fkKcs1fssNKAFORVHRPRIzMsbmvA1+MiHFJ7wRukPTPcWxbxRpb+CYP+9QS28C5nf4gZbaPgE8D90XEx2Yotgn418XMiNcA+zwmaqka46OdjwSlSToinoiI8eLpdcCZOLatJoGSjgTdxnZHKWf+ZwNvBb5fzJAA+APgpKLRT9HYVf4CYBfwLPC7CfWaAcln/mW2AaslnULji7EeuLS5QMuF2gtp/Hx2bFstEhN7im5i+76ySlNm+9xGyd0KxUyId5fVZdYqoprkHxETki4HtgDDwPURsUPSNcBYRGwC3iPpQhrTl/cCF0fED0rqdWxbF8RU0kz6cl3G9mVl9foOX8uuqht8I2IzjTP15teubnp8FXBVRc2ZzSj2j3Pgpw9WV18Nse3kb1kFMFnNsI9Z/1i8mKFVp6aVvetH9fZlBk7+ll1FY/5mfWUWs32ycPK37Lyumw0eOfmbdTKLef5mh40QTDn5m3Xm3G+DJsbH2f/gA7m70ZGTv2UVwISzvw0YLV7M8D9enVZ4+5yW6Omak79l5zF/GzwCD/uYzayqm7zM+kngMX+zUs79NnAEqJo7fOvi5G/ZedjHBk/yom3ZOPlbVoGTvw2eqfHn+NWDf5+7Gx05+Vt2nu1jg0aLl7Do1JemFb79rno7MwMnf8sq8Ji/DSbf4WtWwsM+NnAkwhd8zTrzVE8bRD7zN+vAF3xtUDn5m5WoKvlLWgd8gsZuR9dFxB/PUO5i4Cbg1RExVlHzZgdNjo/zywd2VVZfHbFdmvwlXQ+8EXgsIk5r8/45wP8Epret+WpEXFNWrxkUm7lUUI+kYWAjcB6NvXm3SdoUETtbyh0FXAHcAfwHSa/FsW0VG1qyhBe89OVphW+9vePbXcZ2eR8TynwGWFdS5jsRcXpx+MthszIV5UeCtcCuiHggIvYDNwIXtSn3H4GPAs8B38CxbTWJ4kavsiNBN7FdqjT5R8StNDYENqvc9Jh/2QEslTTWdGxoqWo58FDT893FawdJ+g1gZUR8s3jpLhzbVpMYUtJBPbFdqqox/9dKugd4BPhgROxoV6j4UBsATjqiopbtsJc45r8nIka6bUPSEPAx4LJZ/unsY/s4B7fNaievLLFdRfK/Ezg5Ip6RdAHwNaDtQtYRMQqMAowslSf4GVDZTV4PAyubnq8oXpt2FHAacIsaX8oTgE3AOzvU2V1sr1rq2J7nJsef45m/r2x5h65iW9KFnS76zjn5R8RTTY83S/oLSUsjYs9c67bBV+FmLtuA1ZJOofHFWA9cerCdiH3A0unnkm4BPgjMGKeObevW0JIlvPClL0sr/L9vKSvRVWyXzfaZ8y1okk5Q8c+NpLVFnU/MtV6bPxLH/DuKiAngcmALcB/w5YjYIekaSRd20y/HtnWv2Mwl5ShRR2xD2lTPLwLn0LgosRv4ELCw6NSngDcD75I0AfwKWB8R/tlrSapc2yciNgObW167eoay5zi2rVYVLu8w29hOqbM0+UfEJSXvXwtcm9KYWTu57vB1bFtt5J28zEp5eQcbSENO/mYz8to+Nogmx8d5ald1yzvUwcnf8gqY9Ci6DZihJUs48mWJyzt882/r7cwMnPwtK5/522ASDHk9f7OOnPxtEHlJZ7MOvI2jDSwnf7POfOZvA0cQHvYxm1lV6/mb9ReP+ZuV8pm/DRzh5G9Wxhu42yBK3KglGyd/y8pTPW0wqdK1ferg5G/Z+cTfBpKXdzDrzGf+Nmgmxsd5srrNXGrh5G9ZebaPDaIFS5ZwzMsSN3PJpL8HpWxeqGIzFwBJ6yTdL2mXpCvbvP9vJX1f0t2SbpO0pqKPYHYoDaUdKVXVENtO/pbV9AXfuSZ/ScPARuB8YA1wSZsvwF9FxCsi4nTgT2hsem1WPdEY8085yqqqKbad/C27SDgSrAV2RcQDEbEfuBG46HntNO3JCxyRXrXZbFW3jSM1xbbH/C27xGGdpZKaN6QejYjRpufLgYeanu8GzmqtRNK7gfcDi4BzZ9tXs2TpN3llie2UPXyvB94IPBYRp7V5X8AngAuAZ4HLIuLOsnrNYFbz/PdExMic24vYCGyUdCmwWdLROLatYhPj4+xNn+1TR2z/IfC2TuVTzvw/Q2Mf08/O8P75wOriOAv4JG3+VTKbSUWbuTwMrGx6vqJ4bSY3AqPAb+LYtooNL1nCsdXN9ukmtj9ZVmnp75KIuBXY26HIRcBno+F24BhJJ5bVawbVXfAFtgGrJZ0iaRGwHtjUXEDS6qanbwB+gGPb6lLdbJ9uYvtHZZVWMebfbjxqOfBoa0FJG4ANACcdUUHLNhCqOPGPiAlJlwNbgGHg+ojYIekaYCwiNgGXS3o9cAB4kpKfxXQb2y9aAD/6zlw/0qwd+NnP+dUjj/S83WP3H2BqYqLn7QJMPfsrJr57W5a2O5qe7VOBmmK7txd8i4sYowAjyxRa2MvWG67s/XfjoPvP2J+l3c++KEuzyaq6wzciNgObW167uunxFa1/I2lVRW3/Q2yfsjT0srOrqHZW9i7aA298V8/bfeSxi1lx7Kt63i7A5LF/zgtPzhTgf3NLhzerXdunm9guU0Xyn+14lNlBfb6wm2PbujI5Ps7eBx/M3Y2Oqkj+0z85bqRxMWxfRBzys9hsJn28vINj27qyYMkSjnvp6vKCGaVM9fwicA6Nuai7gQ8BCwEi4lM0fopcAOyiMR3ud+vqrA2enGf+jm2r1eG+pHNEXFLyfgDvrqxHNu/kus3WsW218k5eZp318Zi/WXeUtm5PTk7+llWfX/A1697hPuxjVjevrmaDZmL/fvb+5Me5u9GRk79lFUCe24PM6rNg8WKOO/XU3N3oyMnfsguf+tsg8rCPWWce87eBIyHP9jGb2Sw2azE7rChto5ZsnPwtO5/520Dymb9ZZ07+Nmgm9u/niYceKi+YkZO/ZRX09do+Zl1ZsHgxS1/yktzd6MjJ37LzmL8NGkl9P+bf34NSNvAq3MkLSesk3S9pl6Qr27z/fkk7Jd0r6f9IOrmaT2HWxtBQ2pGgjth28rfsIuEoI2kY2Ehj3901wCWS1rQUuwsYiYhXAjcBf1LJBzBrQ0NDSUdpPTXFtod9LLuKLviuBXZFxAMAxRr8FwE7pwtExNam8rcDb6mmabPnmzhwgL0PV7bvTy2x7eRvWVV4wbfdfrtndSj/duBb1TRt9nwLFi1i6apVVVVXS2w7+Vt2iWf+SyWNNT0fLfbNnTVJbwFGgN/q5u/NSkmNI02W2Hbyt+wSZ/vsiYiRDu8n7bcr6fXAvwd+KyLG03tpNjuzWN4hS2w7+VtWFa7nvw1YLekUGl+M9cClzQUknQH8JbAuIh6rplmzQ4lZJf8ytcR2Uu8SphldJulxSXcXxztS6jWDamb7RMQEcDmwBbgP+HJE7JB0jaQLi2J/ChwJ/HURp5sc21aL6Z28Uo4S3cZ2Wb0pG7hPTzM6j8aFhm2SNkXEzpaiX4qIy0s/iVmTKnfyiojNNDZdb37t6qbHr29+r4jtH+LYtopNHDjAL37288rqm21sp0gZ9imdZmQ2FxmXd3BsWy0WLFrEcStXlhfMKGXYp900o+Vtyl1c3F12k6T+/tTWV6oY9umSY9tqoyElHblUdUXi68Cq4u6ym4Eb2hWStEHSmKSxx5+rqGU7rFW5vENNZh/bTzu45zsB0lDSkUtKy6XTjCLiiaapRdcBZ7arKCJGI2IkIkaWLemmuzaIMp751xPbRzm4571iJ68qlneoS0rLB6cZSVpEY5rR864kSzqx6emFNK5ImyXJeObv2Lba9HvyL73gGxETkqanGQ0D109PMwLGImIT8J5iytEEsBe4rMY+2wDJuY2jY9vqMjkxwb49e3J3o6Okm7wSphldBVxVbddsvsi5mYtj2+qwYOFCXnziieUFM/IdvpZVAFPezcUGTTHm38+c/C07534bRE7+ZiW8gbsNoqE+38bRyd+y85m/DZqpyUme3rcvdzc6cvK3rCrczMWsbwwvWMAxy5bl7kZHTv6W3VTKr2P/PLDDiS/4mnWWc56/WZ2c/M1KeKqnDRpJDDn5m3Xm2T42kPp8tk9//9NkAy9lUbfUHwYJu3L9pqQ7JU1IenM1n8DsUFNTU4w/+2zSkaKO2PaZv2U3UUEdiTvO/ZTG2jwfrKBJsxkNDw9z5DHHVFJXXbHt5G9ZVbiNY+muXBHx4+I9jzRZ7Sq84FtLbDv5W3aJ0bpU0ljT89GIGG163m5XrrPm3Dmzbszugm+W2Hbyt6xmcea/JyJGau2MWUXErM78s8S2k79lV9EYTOmuXGY9U+1Uz1pi28nfsqpweYeDu3LR+GKsBy6tpmqz2YkIJiaqmMoA1BTbTv6WVQAHqqgnYVcuSa8G/gY4FniTpI9ExK9X0LzZ8wwNDbHkhS+spK66YtvJ37KramG3hF25ttH4yWxWuyrv8K0jtp38Laugmnn+Zv3kcFjeIal3CXeXLZb0peL9OyStqrqjNpimk3/ZURfHttVlaGgo6cjWv7ICTXeXnQ+sAS6RtKal2NuBJyPiVODjwEer7qgNpukx/7KjDo5tq8v0mf9hnfxpurssIvYD03eXNbsIuKF4fBPwOqnPVzWyvjAFPJ1w1MSxbbUZHh5OOnJJGfNPubvsYJniyvQ+4DhgT3MhSRuADcXTcf0lf9dNpyuwlJa+DXK7y/flaxt4Wcn7W2j0rUwdfa8vti/7TI7YXspHvpHj/3Gj7Xn0nSrMGNvbt2/fIiklriFT/3t6wbe4ZXkUQNJYrjs2c7U9Xz9zp/cjYl2v+lKnfojt+RpfOT/zTO8dDnGdMuyTcnfZwTKSFgBHA09U0UGzGjm2bd5KSf4H7y6TtIjG3WWbWspsAt5WPH4z8O2I8P5M1u8c2zZvlQ77pNxdBnwa+JwjGb5vAAACOUlEQVSkXcBeGl+iMqPlRWqTq21/5j4ygLHt+Jo/bc+ZfBJjZjb/9PctaGZmVgsnfzOzeShL8i+7pb7Gdq+X9Jikns7BlrRS0lZJOyXtkHRFj9pdIul7ku4p2v1IL9ptan9Y0l2SvtHLdnNxXPcmrou2Hdtz1PPkn3hLfV0+A+SYfzsBfCAi1gCvAd7do888DpwbEa8CTgfWSXpND9qddgVwXw/by8Zx3dO4Bsf2nOU480+5pb4WEXErjRkbPRURj0bEncXjp2kEzfIetBsR8UzxdGFx9OQKv6QVwBuA63rRXh9wXPcorov2HNtzlCP5t7ulvicB0w+KVSHPAO7oUXvDku4GHgNujoietAv8GfD7VLZLY99zXPcwros2Hdtz4Au+PSTpSOArwHsj4qletBkRkxFxOo27V9dKOq3uNiW9EXgsIrbX3ZbllyOuwbE9VzmS/7zcaFvSQhpfkC9ExFd73X5E/ALYSm/Ghs8GLpT0YxrDH+dK+nwP2s3JcZ0hrsGx3a0cyT/llvqBUiwB/Gngvoj4WA/bXSbpmOLxC4DzgB/U3W5EXBURKyJiFY3/v9+OiLfU3W5mjuvetu3YnqOeJ/+ImACmb6m/D/hyROzoRduSvgh8F3iZpN2S3t6LdmmcLbyVxlnC3cVxQQ/aPRHYKuleGsnp5og4bKem9TPHdU/jGhzbc+blHczM5iFf8DUzm4ec/M3M5iEnfzOzecjJ38xsHnLyNzObh5z8zczmISd/M7N56P8DwBENUOzGgAAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Choose colormap\n", "cmap = colorcet.cm.fire\n", "\n", "# Get the colormap colors\n", "my_cmap = cmap(np.arange(cmap.N))\n", "\n", "print(my_cmap)\n", "\n", "# Set alpha\n", "my_cmap[:,-1] = np.linspace(0, 1, cmap.N)\n", "\n", "# Create new colormap\n", "my_cmap = ListedColormap(my_cmap)\n", "\n", "pl.figure()\n", "pl.subplot(121)\n", "pl.pcolormesh(data1, cmap=colorcet.cm.fire)\n", "pl.colorbar()\n", "\n", "pl.subplot(122)\n", "pl.pcolormesh(data1, cmap=my_cmap)\n", "pl.colorbar()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "010000" ], "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import branca\n", "# branca.colormap.linear.Spectral_04\n", "colormap = branca.colormap.linear.Spectral_04.scale(0, 10000)\n", "colormap = colormap.to_step(index=[0, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000])\n", "colormap.caption = 'mm'\n", "colormap" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "010000" ], "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import branca\n", "\n", "\n", "colormap = branca.colormap.StepColormap(\n", " ['#64abb0','#9dd3a7', '#c7e9ad', '#edf8b9', '#ffedaa', '#fec980', '#f99e59', '#e85b3a', '#d7191c'],\n", " vmin=0, vmax=10000,\n", " index=[0, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000],\n", " caption='step'\n", ")\n", "\n", "colormap" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'cm' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mStepColormap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'#64abb0'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'cm' is not defined" ] } ], "source": [ "cm.StepColormap(['#64abb0'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ftp://jsimpson.pps.eosdis.nasa.gov/NRTPUB/imerg/gis/README.GIS.pdf" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }