{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The original array is:\n", "[[ 0 1 2 3 4 5 6 7]\n", " [ 8 9 10 11 12 13 14 15]\n", " [16 17 18 19 20 21 22 23]\n", " [24 25 26 27 28 29 30 31]\n", " [32 33 34 35 36 37 38 39]\n", " [40 41 42 43 44 45 46 47]\n", " [48 49 50 51 52 53 54 55]]\n", "\n", "\n", "The transposed array is:\n", "[[ 0 8 16 24 32 40 48]\n", " [ 1 9 17 25 33 41 49]\n", " [ 2 10 18 26 34 42 50]\n", " [ 3 11 19 27 35 43 51]\n", " [ 4 12 20 28 36 44 52]\n", " [ 5 13 21 29 37 45 53]\n", " [ 6 14 22 30 38 46 54]\n", " [ 7 15 23 31 39 47 55]]\n" ] } ], "source": [ "import numpy as np \n", "a = np.arange(56).reshape(7,8) \n", "\n", "print('The original array is:')\n", "print(a)\n", "print('\\n') \n", "\n", "print('The transposed array is:')\n", "print(np.transpose(a))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(7, 8)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.shape" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "27" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 2D Arrays indexing\n", "# array[line, column]\n", "a[3,3]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n", " [24, 25, 26, 27, 28, 29, 30, 31],\n", " [48, 49, 50, 51, 52, 53, 54, 55]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 2D Arrays slicing\n", "# array[start:stop:step]\n", "a[::3] # each 3 lines from the first" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n", " [ 8, 9, 10, 11, 12, 13, 14, 15],\n", " [16, 17, 18, 19, 20, 21, 22, 23],\n", " [24, 25, 26, 27, 28, 29, 30, 31],\n", " [32, 33, 34, 35, 36, 37, 38, 39],\n", " [40, 41, 42, 43, 44, 45, 46, 47],\n", " [48, 49, 50, 51, 52, 53, 54, 55]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[0:7:1]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[24, 25, 26, 27, 28, 29, 30, 31],\n", " [32, 33, 34, 35, 36, 37, 38, 39],\n", " [40, 41, 42, 43, 44, 45, 46, 47],\n", " [48, 49, 50, 51, 52, 53, 54, 55]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[3::]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625, 0.75 , 0.875, 1. ,\n", " 1.125, 1.25 ])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clevs = np.arange(0,1.26,0.125)\n", "clevs" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "A = np.ones((5,5))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1., 1., 1., 1., 1.],\n", " [1., 1., 1., 1., 1.],\n", " [1., 1., 1., 1., 1.],\n", " [1., 1., 1., 1., 1.],\n", " [1., 1., 1., 1., 1.]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "A[1:4,1:4] = 0" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1., 1., 1., 1., 1.],\n", " [1., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 1.],\n", " [1., 1., 1., 1., 1.]])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.725 0.99 1. 0.87 ]\n", "[0.725 0.99 1. 0.87 ]\n", "[0.725 0.99 1. 0.87 ]\n" ] } ], "source": [ "sampleArr = np.array([0.725, 0.39, 0.99, 1, 0.4, 0.223, 0.87])\n", "\n", "condition = (sampleArr > 0.5)\n", "extracted = np.extract(condition, sampleArr) # returns [0.725 0.99]\n", "\n", "print(sampleArr[sampleArr > 0.5])\n", "print(sampleArr[condition])\n", "print(extracted)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }