You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
5.7 KiB
233 lines
5.7 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 1, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"ename": "ImportError", |
|
"evalue": "No module named 'mpl_toolkits.basemap'", |
|
"output_type": "error", |
|
"traceback": [ |
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", |
|
"\u001b[0;32m<ipython-input-1-986bd408e0b7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mh5py\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mh5py\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mmpl_toolkits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbasemap\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBasemap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
"\u001b[0;31mImportError\u001b[0m: No module named 'mpl_toolkits.basemap'" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"%matplotlib inline\n", |
|
"import matplotlib.pyplot as plt\n", |
|
"import numpy as np\n", |
|
"import h5py as h5py\n", |
|
"from mpl_toolkits.basemap import Basemap, cm" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# hdf5 = '/notebooks/3B-MO.MS.MRG.3IMERG.20150801-S000000-E235959.08.V03D.HDF5'\n", |
|
"# hdf5 = '/notebooks/3B-MO.MS.MRG.3IMERG.20150801-S000000-E235959.08.V06A.HDF5'\n", |
|
"hdf5 = '/notebooks/3B-MO.MS.MRG.3IMERG.20190101-S000000-E235959.08.V06A.HDF5'\n", |
|
"dataset = h5py.File(hdf5,'r') # Change this to the proper path" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"precip = dataset['Grid/precipitation'][:]\n", |
|
"\n", |
|
"precip = np.transpose(precip[0])\n", |
|
"\n", |
|
" \n", |
|
"\n", |
|
"theLats= dataset['Grid/lat'][:]\n", |
|
"\n", |
|
"theLons = dataset['Grid/lon'][:]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Plot the figure, define the geographic bounds\n", |
|
"\n", |
|
"fig = plt.figure(dpi=300)\n", |
|
"\n", |
|
"latcorners = ([-60,60])\n", |
|
"\n", |
|
"loncorners = ([-180,180])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"m = Basemap(\n", |
|
" projection='cyl',\n", |
|
" llcrnrlat=latcorners[0],\n", |
|
" urcrnrlat=latcorners[1],\n", |
|
" llcrnrlon=loncorners[0],\n", |
|
" urcrnrlon=loncorners[1])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": { |
|
"scrolled": true |
|
}, |
|
"outputs": [], |
|
"source": [ |
|
"# Draw coastlines, state and country boundaries, edge of map.\n", |
|
"\n", |
|
"m.drawcoastlines()\n", |
|
"\n", |
|
"m.drawstates()\n", |
|
"\n", |
|
"m.drawcountries()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Draw filled contours.\n", |
|
"\n", |
|
"clevs = np.arange(0,1.26,0.125)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Define the latitude and longitude data\n", |
|
"\n", |
|
"x, y = np.float32(np.meshgrid(theLons, theLats))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Mask the values less than 0 because there is no data to plot.\n", |
|
"\n", |
|
"masked_array = np.ma.masked_where(precip < 0,precip)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Plot every masked value as white\n", |
|
"\n", |
|
"cmap = cm.GMT_drywet\n", |
|
"\n", |
|
"cmap.set_bad('w',1.)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": { |
|
"scrolled": false |
|
}, |
|
"outputs": [], |
|
"source": [ |
|
"# Plot the data\n", |
|
"\n", |
|
"cs = m.contourf(x,y,precip,clevs,cmap=cmap,latlon=True)\n", |
|
"\n", |
|
"\n", |
|
"\n", |
|
"parallels = np.arange(-60.,61,20.)\n", |
|
"\n", |
|
"m.drawparallels(parallels,labels=[True,False,True,False])\n", |
|
"\n", |
|
"meridians = np.arange(-180.,180.,60.)\n", |
|
"\n", |
|
"m.drawmeridians(meridians,labels=[False,False,False,True])" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Set the title and fonts\n", |
|
"\n", |
|
"plt.title('August 2015 Monthly Average Rain Rate')\n", |
|
"\n", |
|
"font = {'weight' : 'bold', 'size' : 6}\n", |
|
"\n", |
|
"plt.rc('font', **font)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"# Add colorbar\n", |
|
"\n", |
|
"cbar = m.colorbar(cs,location='right',pad=\"5%\")\n", |
|
"\n", |
|
"cbar.set_label('mm/h')\n", |
|
"\n", |
|
"# plt.show()\n", |
|
"\n", |
|
"plt.savefig('testIMERGmap.png',dpi=200)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.5.2" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 2 |
|
}
|
|
|