You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

155 lines
3.5 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import folium\n",
"import matplotlib\n",
"from matplotlib.pyplot import imread\n",
"from folium import raster_layers\n",
"from scipy.ndimage import imread"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# m = folium.Map([-17.1725, -47.3288], zoom_start=13)\n",
"m = folium.Map([-16.47, -47.43], zoom_start=12, control_scale=True)\n",
"# boundsdata = r'map.geojson'\n",
"# folium.GeoJson(boundsdata).add_to(m)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read in png file to numpy array\n",
"# image = '/notebooks/resources/T22KHG_20190425T132241_TCI.tif'\n",
"# image = '/notebooks/resources/T22KHG_20190425T132241_TCI_quarter.tif'\n",
"image = '/notebooks/resources/T22KHG_20190425T132241_TCI_smaller.tif'\n",
"data = matplotlib.pyplot.imread(image)\n",
"\n",
"# boundary of the image on the map\n",
"# -47.72086687985285,-47.18137037025522,-16.627150415017045,-16.329425174039407 [EPSG:4326]\n",
"# -47.72,-47.18,-16.62,-16.32\n",
"# min_lon = -47.3566\n",
"# max_lon = -47.1719\n",
"# min_lat = -16.4769\n",
"# max_lat = -16.6105\n",
"min_lon = -47.72086687985285\n",
"max_lon = -47.18137037025522\n",
"min_lat = -16.627150415017045\n",
"max_lat = -16.329425174039407\n",
"\n",
"# Overlay the image\n",
"m.add_child(raster_layers.ImageOverlay(data,\n",
"# opacity = 0.8,\n",
" bounds = [[min_lat, min_lon], [max_lat, max_lon]]))\n",
"\n",
"m"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import h5py\n",
"hdf5 = '/notebooks/resources/3B-MO.MS.MRG.3IMERG.20190101-S000000-E235959.01.V06A.HDF5'\n",
"dataset = h5py.File(hdf5,'r')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"precip = dataset['Grid/precipitation'][:]\n",
"precip = np.transpose(precip[0])\n",
"\n",
"theLats = dataset['Grid/lat'][:]\n",
"theLons = dataset['Grid/lon'][:]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"precip[728,1326]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"theLats[728]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"theLons[1326]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}